
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  
v e c  o m m  o n s .  o r  g / l  i c e  n s e s  / b  y - n c - n d / 4 . 0 /.

Wang et al. Journal of Nanobiotechnology          (2025) 23:411 
https://doi.org/10.1186/s12951-025-03467-y

checkpoint inhibitors is essential [3–5]. This requires the 
development of more reliable predictive tools and assays 
for screening immunotherapy responders [6]. Effective 
biomarkers should enable the classification of patients 
and predict their response to specific immunotherapies 
[7]. Therefore, identifying suitable biomarkers to predict 
the efficacy of ICI therapies and improve immune check-
point blockade outcomes remains a significant challenge 
in current immunotherapy research.

Extracellular vesicles (EVs) have been recognized as 
key players in several hallmarks of cancer, including 
angiogenesis, invasion, and metastasis [8–10]. Elevated 
levels of immune checkpoint proteins, such as PD-L1, 
expressed in the cancer-derived EVs have been shown 
to be potent mediators of immunosuppression [11–14]. 
In particular, the level of PD-L1 expressed on circulat-
ing exosomes (exocytosis EVs ranging from 40 to 160 nm 

Introduction
Immunotherapy is a critical method for cancer treatment, 
with immune checkpoint inhibitors (ICIs) designed to 
block checkpoint proteins, such as programmed cell 
death ligand 1 (PD-L1), cytotoxic T lymphocyte associate 
protein-4 (CTLA-4), and programmed death 1 (PD-1), 
from binding to their respective receptors, which other-
wise suppress immune function [1]. While the efficacy of 
immunotherapy is comparable to traditional cancer treat-
ments, it remains ineffective in many clinical cases [2]. To 
further enhance treatment efficacy and patient response 
rates, identifying more specific biomarkers and immune 
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Abstract
Extracellular vesicles (EVs) is promising in predicting the efficacy of immune checkpoint inhibitor (ICI) therapies. But 
it is challenging to determine the level of circulating EVs due to their variations in spatial and temporal distribution. 
To address this, we developed an in situ EV detection platform integrating multiplex EV capture with microfluidic-
generated immune-tumor spheroids. This platform enables in situ monitoring of EV secretion dynamics under 
ICI and chemotherapeutic treatments, capturing localized and temporal changes in EV release. Using predictive 
models, we identified EVs carrying programmed cell death ligand 1 (PD-L1) as the most robust predictors of 
spheroid viability during treatment. RNA sequencing further revealed that dynamic EV expression changes are 
driven by gene transcription, providing a temporal understanding of EV regulation. Our platform overcomes the 
limitations of traditional methods by offering a physiologically relevant system to study EV-mediated immune 
responses. By addressing the spatial and temporal heterogeneity of EVs, this work advances EV-based biomarker 
discovery and provides a foundation for optimizing personalized immunotherapies.
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in diameter) [15] has been identified as an indicator 
of tumor cells’ adaptive responses to T cells during the 
course of anti-PD-1 therapy in metastatic melanoma 
patients, thus allowing for the stratification of responders 
and non-responders to anti-PD-1 treatment [16]. These 
findings suggest that monitoring circulating exosomal 
PD-L1 could serve as a useful tool for predicting tumor 
responses to immunotherapy. Moreover, exosomal PD-L1 
acts not only on tumor cells and the local tumor micro-
environment but also on distal sites, such as secondary 
lymphoid organs, by targeting T lymphocytes [17]. It 
has also been observed that the expression of exosomal 
PD-L1 in the blood differs from that of cellular PD-L1 in 
local tumor biopsies, suggesting potential temporal and 
spatial variations in the distribution of exosomes car-
rying PD-L1 [12]. Therefore, the variation in the spatial 
and temporal distribution of circulating EVs represents a 
major challenge in the development of circulating EVs as 
reliable predictive biomarkers for ICI therapies.

In situ monitoring of EV dynamics provides a compre-
hensive approach to study EVs in both spatial and tem-
poral dimensions. Intercellular and intracellular activities 
of EVs have been observed using high-resolution tech-
nologies, which help to elucidate mechanisms in various 
cellular processes [18–22]. While these studies have pro-
vided critical insights into EV activity in numerous cel-
lular processes, they are often limited by the throughput 
of EV detection due to spectral overlap. The combination 
of multiplex EV detection with single-cell isolation has 

been used to detect EVs carrying different markers [23–
26]. These methods have enabled the examination of EV 
secretion from tumor cells or tumor-immune cell pairs at 
the single-cell level. However, despite the fact that single-
cell isolation can disentangle multiplex observations in 
an averaged cell population, it is still challenging to rep-
licate the three-dimensional (3D) structure and complex 
components of the tumor microenvironment (TME). For 
example, incorporating immune cells into the 3D TME at 
a single-cell level is challenging, whereas immune cells, 
such as tumor-infiltrating lymphocytes, are a crucial 
criterion for the success of anti-PD-L1 and/or anti-PD-
1-based immunotherapies [27]. 3D tumor spheroids gen-
erated through microfluidic techniques have been widely 
used as in-vitro models to mimic the TME and investi-
gate cell-cell interactions [28, 29], stromal-to-cell effects 
[30, 31], and the evaluation of chemical [32–34] or pho-
tothermal treatments [35]. Notably, cytokines secreted 
from tumor spheroids can be captured and measured in 
situ using beads [36] or antibody-coated substrates [37, 
38]. However, to the best of our knowledge, no studies 
have yet reported the in situ detection of EVs secreted 
from individual tumor spheroids.

Here, we developed a platform for in situ multiplex 
detection of EV secretion from spheroids formed by 
tumor and immune cells. The dynamic changes in the 
secretion of EVs carrying various biomarkers, such as 
the immunoregulatory molecules PD-1 and PD-L1, were 
examined as a function of drug treatment duration and 
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EV enrichment time. The predictive capacity of these EV 
biomarkers was validated by establishing several machine 
learning models based on the correlation between cell 
viability and EV secretion levels upon different drug 
treatments. Additionally, the transcriptome expression 
driving EV secretion in response to drug treatments were 
explored via RNA sequencing. Taken together, our work 
suggests that this in situ EV detection method, integrated 
with machine learning models and next-generation RNA 
sequencing, offers a promising platform for advanc-
ing the discovery of biomarkers for evaluating immune 
checkpoint therapies.

Materials and methods
Materials and cells
Roswell Park Memorial Institute (RPMI) 1640 medium 
and TrypLE were purchased from Gibco (Thermo Fisher 
Scientific, USA). Fetal bovine serum (FBS) was obtained 
from Cyagen Biosciences Inc. (China). Penicillin–strep-
tomycin (PS) solution was purchased from Solarbio Sci-
ence & Technology Co., Ltd. (China). MDA-MB-231 and 
Jurkat cells were obtained from Peking University Third 
Hospital and Shandong University Qilu Hospital, respec-
tively. SU-8 3050 photoresist and developer were ordered 
from Bynano Co., Ltd. Polydimethylsiloxane (PDMS) 
and curing agent were obtained from Momentive Per-
formance Materials Inc. (USA). Cell-laden droplets were 
generated from a fluorinated oil (Novec 7500, 3 M) con-
taining 2% (w/w) FluoSurf surfactant (Emulseo, France). 
Graphene oxide quantum dots (GOQDs) were pur-
chased from XFNANO Materials Tech Co., Ltd. (China). 
Bovine serum albumin (BSA) and 3-aminopropyltrime-
thoxysilane (APTES) were obtained from Sigma-Aldrich 
(USA). Phosphate-buffered saline (PBS) was acquired 
from Corning (USA). Capture antibodies against CD9, 
CD63, CD81, PD-1, PD-L1, IFN-γ, IL-1β, and IL-6, and 
biotin-labeled detection antibodies against IFN-γ, IL-1β, 
and IL-6 were ordered from R&D Systems (USA). Detec-
tion antibodies including Alexa Fluor® 594 anti-human 
CD63, FITC anti-human CD274 (B7-H1, PD-L1), and 
APC anti-human CD279 (PD-1), and Streptavidin-APC 
were purchased from BioLegend (USA). Alexa Fluor 488 
E-Cadherin rabbit monoclonal antibody was purchased 
from Cell Signaling Technology. Ki-67 Monoclonal Anti-
body (FITC) and HIF-1α Monoclonal Antibody (APC) 
were purchased from eBioscience™ (USA). ActinRed, 
live-dead assay reagents, and trypsin were purchased 
from KeyGEN BioTECH (China). Cell Tracker Green and 
Cell Tracker Red were purchased from ThermoFisher 
(USA). Nivolumab (anti-PD-1), Pembrolizumab (anti-
PD-1), Tremelimumab (anti-CTLA-4), Atezolizumab 
(anti-PD-L1), and Dacarbazine (NSC-45388) were pur-
chased from Selleck (USA). Epirubicin was purchased 
from Pfizer (China). Sugemalimab was purchased from 

WuXi Biologics (China). Cadonilimab was purchased 
from Akeso Inc. (China). The CD3 and CD28 antibod-
ies for T cell activation were purchased from Elabscience 
(China).

Microfluidic fabrication
The fabrication of masters and PDMS slabs for the 
microfluidic chip used in spheroid formation has been 
described in detail previously [38]. Briefly, the masters 
were fabricated by traditional photolithography, and the 
PDMS was prepared using soft-lithography. After hole 
punching at the inlets and outlets of the channel, the two 
PDMS slabs were physically bonded and sandwiched 
between two poly(methyl methacrylate) (PMMA) clamps 
to seal the device. For drug treatment of the spheroids, 
a PMMA slab with hollow chambers was placed on top 
of the spheroids. The master fabrication for preparing the 
antibody barcode slide was described in the Supporting 
Information.

Cell culture and T cell activation
MDA-MB-231 and Jurkat cells were cultured in RPMI 
1640 medium supplemented with 10% FBS and 1% 
PS. For passaging MDA-MB-231 cells, the cells were 
detached from culture flasks (T25) by digestion with 2 
mL of trypsin solution at 37 °C for 5 min, and the diges-
tion was terminated by adding 3 mL of culture medium. 
The cell suspension was then centrifuged at 1200 rpm for 
3 min, and the cells were resuspended in fresh medium. 
Jurkat cells were centrifuged at 1200 rpm for 3 min, then 
resuspended in T25 flasks at a density of 1 × 10⁵ cells/mL, 
with the addition of 5 mL of culture medium. All cells 
were incubated in a cell culture incubator set at 37  °C 
with 5% CO2. Cells were passaged every 2–3 days. Prior 
to introduction into the microfluidic chip, Jurkat T cells 
were activated with a mixture of CD3 and CD28 antibod-
ies at a concentration of 4 µg/mL in the culture medium 
for one day. Afterward, the supernatant was discarded, 
and the remaining pellet was directly introduced into the 
microfluidic chip. For 2D cell culture, cells were seeded 
directly into a 96-well plate at 1 × 10⁵ cells/well and cul-
tured for the desired duration.

Formation and culture of spheroids
The formation of spheroids followed a similar method to 
those described previously [38]. In brief, the device was 
assembled after ultraviolet (UV) light sterilization of the 
PDMS and PMMA clamps for 30  min. Fluorinated oil 
powered by a pressure pump was injected into the chan-
nel to expel air bubbles. A cell suspension with a concen-
tration of 1 × 10⁶ cells/mL (MDA-MB-231 to Jurkat cell 
ratio of 1:1) was then introduced into the chip, replac-
ing the fluorinated oil in the wells and channels. The cell 
suspension in the wells was emulsified into droplets by 
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fluorinated oil containing 2% surfactant. After disassem-
bling the device, the microwell chip containing cell-laden 
droplets was immersed in culture medium to remove any 
residual oil. The cells in the microwells were subsequently 
cultured for 24 h to promote the formation of spheroids 
with tight intercellular connections. For drug treatments, 
spheroids in each row were exposed to 100 µL of drug/
medium solution, with daily drug/medium changes.

Viability test
A solution of calcein-AM (0.02% w/w) and propidium 
iodide (PI) (0.02% w/w) in PBS was used to stain cells at 
room temperature for 30 min. Fluorescence images were 
acquired using a Nikon Ti2 fluorescence microscope. The 
cell viability in 2D and 3D formats was defined as the 
ratio of integrated green fluorescence to the total inte-
grated fluorescence (green and red) in the fluorescence 
images after live/dead staining.

Immunofluorescent staining
Spheroids were fixed in 4% paraformaldehyde in PBS 
for 20 min and permeabilized at room temperature with 
0.2% Triton X-100 for 5  min. Cells were then blocked 
with 3% BSA in PBS for 1 h. The first group of spheroids 
was stained with E-cadherin (1:200 dilution) and Actin-
Red (1:50 dilution), the second group with Ki-67 (1:400 
dilution) and HIF-1α (1:50 dilution), and the third group 
with PD-L1 (1:20 dilution) and PD-1 (1:20 dilution) at 
4  °C overnight. After three washes with PBS, cell nuclei 
were stained with DAPI for 15  min, and the spheroids 
were sealed with a cover slide. The stained spheroids 
were imaged using a Zeiss LSM880 confocal microscope.

Preparation of antibody barcode slide
The glass slide for EV detection was pre-modified with 
capture antibodies. Briefly, following oxygen plasma 
treatment, the surfaces of the glass slides were func-
tionalized with APTES and GOQDs. A 2 µL volume of 
antibody solution was then introduced into each micro-
channel and withdrawn using a vacuum pump for over 
4  h until the antibodies were completely bound to the 
GOQDs on the glass surface. The design of the channels 
for immobilizing the capture antibodies is illustrated in 
Fig. S1 (Supporting Information).

EV and cytokine detection
Before covering the detection glass slide, 1 mL of cell cul-
ture medium was loaded onto the microwells to wet the 
surface of the chip and prevent bubble formation. A lead 
block was placed on top of the slide to drain the liquid 
between the microwell and the slide, ensuring a seal. The 
entire setup was placed in a 37 °C incubator to maintain 
humidity for cell culture. Before imaging the captured 
EV slide, 400 µL of Alexa Fluor® 594 CD63 detection 

antibody (1:100 dilution in 1% BSA) was added to the 
barcode slide and incubated for 45  min. The glass slide 
was then rinsed with PBS and distilled water. For fluo-
rescence imaging, the slide was scanned using a GenePix 
4400 A scanner with a 594 nm laser at 100% power and 
600 PMT gain. Images from the scanner were analyzed 
using GenePix Pro software. The detection of captured 
cytokines on the slide followed the same protocol as EV 
detection, with modifications in the detection system. 
Biotin-labeled detection antibodies (diluted 1:100 in 1% 
BSA) were used, followed by APC-conjugated strepta-
vidin (1:100 dilution in 1% BSA, 30-minute incubation) 
for fluorescent labeling. Imaging was performed using a 
635 nm laser at 80% power and a PMT gain of 500. For 
cytokine detection in 2D cultured cell suspensions, a 
PDMS slab containing rectangular wells (2 mm in length) 
was bonded to the antibody-barcode slide to create sam-
ple-loading chambers. Each cell suspension sample (4 µL) 
was loaded into the designated wells and incubated for 
45 min to allow cytokine capture on the slide.

SEM imaging
Prior to imaging, the EVs bound to the barcode glass 
slide were coated with Pt nanoparticles using a Hitachi 
MC1000 Ion Sputter Coater for 20 s at 15 mA. Imaging 
was conducted on a Scanning Electron Microscope (HIT-
ACHI UHR FE-SEM SU8200 Series).

Machine learning
The correlation between cell viability and the EV secre-
tion change factor under different drug concentrations 
was established using a linear regression model, a non-
linear regression model, and a logistic regression model 
with JMP Pro. In the linear regression model, the param-
eters for each independent variable were estimated using 
a least squares estimator. Nonlinear regression analysis 
was performed using the Neural Network function in 
JMP Pro, with a one-layer feed-forward neural network 
and a hyperbolic tangent function with 10 hidden neu-
rons. In the logistic regression model, cell viability was 
classified into two categories: 1 (0.7-1.0) and 2 (0-0.7). 
The ROC curve was plotted by evaluating the changes 
in the positive rate (Sensitivity) against the false positive 
rate (1-Specificity) for different cut-offs of EV secretion 
and drug treatment conditions. For all three regres-
sion models, 75% of the data were used for training the 
algorithm, and 25% were used to independently test the 
models.

RNA-seq and analysis
The spheroids in each row of microwells were first dis-
sociated into individual cells by enzymatic digestion 
with 100 µL of TrypLE for 10 min, followed by physical 
agitation. The collected cells were then lysed for RNA 
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extraction using a kit (Quick-RNA Microprep Kit, Zymo 
Research). The RNA quality was checked using an Agi-
lent 2100 Bioanalyzer. The purified RNA was indexed 
using the TruSeq RNA sample preparation kit and 
sequenced on the Novaseq PE150 platform (Illumina). 
For data analysis, HISAT2 was used to align reads to 
the latest Ensembl release 47 human genome/transcrip-
tome (GRCh38.p14). Samtools was used to generate 
raw counts from alignment files (SAM). Differentially 
expressed genes, Principal Component Analysis (PCA), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis were performed using the NovoMagic 
online tool.

Statistical analysis
All experiments were performed in triplicate (n = 3) to 
assess reproducibility. Statistical analysis was conducted 
using Origin. A t-test was employed to evaluate the sig-
nificance of differences in cell viability between the 2D 
and 3D models. One-way ANOVA was used to assess the 
statistical significance of differential effects under various 
conditions on cell viability and EV secretion, with the sig-
nificance threshold set at p ≤ 0.05.

Results and discussion
A co-cultured tumor spheroid model for in situ and 
dynamic detection of extracellular vesicles after immune-
checkpoint inhibitor treatments
Immunotherapy includes immune checkpoint inhibi-
tors (ICIs) designed to block checkpoint proteins, such 
as PD-L1 and PD-1, as depicted in Fig.  1A. The in situ 
detection of extracellular vesicles (EVs) is used to assess 
the efficacy of immunotherapy, serving as more specific 
biomarkers. In this study, “in situ” specifically denotes a 
localized EV detection method that analyzes EVs within 
their original 3D spheroid microenvironment, with-
out physical disruption or isolation. Tumor spheroids, 
formed from a mixture of tumor cells and T cells, were 
generated using a self-digitization method [38, 39]. 
Briefly, a microfluidic chip composed of two polydimeth-
ylsiloxane (PDMS) slabs—one containing a serpentine 
channel and the other an array of microwells—was used 
to create tumor spheroids (Fig. 1B). The mixture of tumor 
cells and T cells was introduced into the microwells 
after air was expelled by a flow of fluorinated oil. Sub-
sequently, fluorinated oil was reintroduced to shear the 
cell suspension in the microwells into droplets. Finally, 
the oil was replaced with cell culture medium for long-
term culture. Using this method, an array of hundreds of 
cell-laden droplets was generated within the microfluidic 
chip. Figure  1C illustrates the workflow for ICI treat-
ments and in situ EV detection on co-cultured spheroids. 
After one day of culture, the tumor cells and T cells in the 
droplets assembled into spheroids through intercellular 

connections. Drug solutions were then added to each 
row of spheroids for treatments of varying durations (2–7 
days). A glass slide functionalized with stripes of capture 
antibodies, referred to as barcode antibodies, was placed 
perpendicular to the rows of spheroids to capture and 
detect the secreted EVs with an enrichment of 8–24  h. 
Eventually, the drug-treated spheroids in each row were 
dissociated into individual cells for subsequent RNA 
sequencing. The captured EVs from individual spheroids 
on the functionalized slide were detected using a fluores-
cently labeled CD63 detection antibody (Fig.  1D). This 
method enabled the determination of EV secretion levels 
from a single spheroid based on the fluorescent intensity 
of the detection antibodies immobilized on the barcode 
antibodies.

The captured EVs for individual spheroids appeared as 
a barcode stripe pattern on the slide, as shown in Fig. 1E. 
This approach enabled the detection of multiple EVs 
from hundreds of individual spheroids subjected to vary-
ing drug treatments on a single slide. By adjusting the 
drug treatment or EV enrichment time, we could obtain 
changes in EV secretion by comparing treated samples 
with the untreated control group. Statistical correlations 
were established between spheroid viability and changes 
in EV secretion, enabling the prediction of the viability of 
unknown samples for the evaluation of ICI therapies. The 
treated spheroids were also recovered and lysed for sub-
sequent investigation of genomic mechanisms involved 
in immune pathways and gene expression.

Immune-check point expression in the co-cultured 
spheroids
The spheroids generated through this self-digitization 
method exhibited a high degree of uniformity in both 
size and cell viability. MDA-MB-231 breast cancer cells 
and activated Jurkat T cells, used in a 1:1 ratio, were 
employed to establish the co-cultured spheroids as a 
model for tumor and immune cells, respectively. The 50% 
ratio of Jurkat T cells in the spheroids represents the leu-
kocyte infiltration can account for up to 50% of cellular 
composition in some cancer types [40–42]. As a proof-
of-concept study, we employed two standardized cell 
lines (MDA-MB-231 and Jurkat) to establish a controlled 
experimental system. The use of well-characterized lines 
provided a reproducible platform to isolate and validate 
the specific contributions of EVs, forming a critical foun-
dation for future translational studies. Previous stud-
ies have demonstrated the secretion of exosomal PD-L1 
by MDA-MB-231 cells and the secretion of exosomal 
PD-1 by activated Jurkat cells [43–45]. Figure 2A shows 
a bright-field image of the spheroids following one day 
of culture on the chip. The spheroid diameter exhibited 
high uniformity, with a coefficient of variation (CV) con-
sistently below 0.5% across all replicates, as demonstrated 
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by the size distribution histograms in Fig. S2 (Support-
ing Information). Additionally, spheroid formation effi-
ciency reached nearly 100% in all 216 microwells per 
chip, ensuring reliable and reproducible 3D cell culture 
production. After staining with Cell-Tracker Green and 
Cell-Tracker Red, the viable MDA-MB-231 cells and Jur-
kat T cells within the spheroids are distinctly visible, as 

shown in Fig. 2B. The merged fluorescent image of green 
MDA-MB-231 cells and red Jurkat T cells in Fig. 2C fur-
ther confirms the co-existence of both cell types.

To verify the formation of tumor spheroids, the cells 
were stained in the co-cultured spheroid after one day of 
culture with E-cadherin, a cell surface marker for inter-
cellular connections [46, 47] (Fig. 2D). The cytoskeletons 

Fig. 1 Schematics of the formation of multicellular tumor spheroids, drug treatment, and extracellular vesicle (EV) detection. (A) Overview of the work 
principle. (B) Schematic of the microfluidic generation of co-cultured spheroids. (C) Workflow of the spheroid formation, drug treatment, in-site EV detec-
tion, and cell extraction for RNA sequencing. (D) Principle for EV detection using a barcode slide. (E) The main output results of this work
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and nuclei of the cells were stained with Actin-Red and 
DAPI, respectively. The expression of Ki67 and HIF-1α 
indicates the cell proliferation and hypoxic state of the 
spheroids, respectively (Fig.  2E). The expression of cel-
lular PD-L1 and PD-1 was confirmed by immunofluores-
cent staining of PD-L1 and PD-1 on the cell surface, as 
shown in Fig. 2F.

Cytotoxicity of ICIs to the co-cultured 3D spheroids and 
traditional 96-well plate based 2D cultured cells
To validate the co-cultured model in the evaluation of 
ICI treatments, we selected Atezolizumab, Nivolumab, 
and Tremelimumab as model drugs for anti-PD-L1, anti-
PD-1, and anti-CTLA-4 therapies, respectively. For com-
parison, Epirubicin was chosen as a chemotherapeutic 
drug. The concentration of ICIs was set at 1 × 10² mg/
mL to be comparable with that used in clinical ICI treat-
ments. Epirubicin was applied at varying concentrations 
to the co-cultured cells in both 3D and 2D cultures.

Figure 3A presents images of MDA-MB-231 and Jurkat 
cells in 2D culture using a fluorescent live-dead assay after 

two days of various drug treatments. The green and red 
fluorescence in the cells identifies viable and dead cells, 
respectively. The tumor cells and T cells under ICI treat-
ments show higher cell density and viability compared 
to those under chemotherapeutic treatments. Figure  3B 
shows the live-dead staining of co-cultured 3D spheroids 
after two days of drug treatment, with varying drug types 
(Fig. 3B, left panel) and varying concentrations of Epiru-
bicin (Fig. 3B, right panel). Tumor spheroids in 3D format 
better mimic the TME in a more physiological condition 
compared to 2D monolayer cell cultures. To compare 
cell activity in 2D and 3D formats, the cellular viability 
is summarized in both culture formats after two days 
of drug treatments at a concentration of 1 × 10² mg/mL 
(Fig. 3C). Cell viability in 3D format was lower than that 
in 2D format for ICI treatments, while remaining simi-
lar for chemotherapeutic treatments. This may be due to 
the restricted space for tumor growth and higher tumor-
T cell interactions in 3D format compared to the 2D for-
mat. Moreover, the viability of cells treated with ICIs was 
higher than that of cells treated with chemotherapeutic 

Fig. 2 Morphological characterization of spheroids from MDA-MB-231 breast cancer cells and Jurkat T cells. (A) Bright-field image of a representative 
portion of the spheroids formed from MDA-MB-231 and Jurkat cells using the microfluidic platform. Scale bar = 500 μm. (B) Fluorescence images of co-
cultured spheroids stained with Cell-Tracker Green for viable MDA-MB-231 cells and Cell-Tracker Red for viable Jurkat cells after one day of culture. Scale 
bar = 500 μm. (C) Bright-field and fluorescence images of the co-cultured spheroid stained with Cell-Tracker dyes. Scale bars = 100 μm. Immunofluores-
cence staining of spheroids after one-day culture: (D) E-cadherin (green) and Actin-Red (red); (E) Ki67 (green) and HIF-1α (red); (F) PD-L1 (green) and PD-1 
(red), and DAPI (nuclei, blue), with merged fluorescence images for D, E, and F. Scale bars = 100 μm for D, E, and F
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drugs at the same concentration in both 2D and 3D mod-
els. Figure  3D shows that cell viability decreased as the 
concentration of Epirubicin increased in both 2D and 3D 
formats, with viability being higher in the 2D culture for-
mat than in the 3D format.

Cell viability at different treatment times was also 
investigated. Figure 3E shows changes in cell viability in 
3D co-cultured spheroids at 2, 4, and 7 days. Cell viabil-
ity began to significantly decrease by day 4 for treatment 
of Atezolizumab and Tremelimumab, and by day 7 for 
treatment of Nivolumab. In contrast, cells treated with 
Epirubicin showed a dramatic decrease in viability at day 
2 and only slight decreases at day 4 and day 7, indicat-
ing a faster cellular response to chemotherapeutic treat-
ment than to ICI treatments. The live-dead staining and 
cellular viability in 2D culture at different treatment 
times are presented in Fig. S3 (Supporting Information). 
Our results reveal a pronounced reduction in cell viabil-
ity within the 3D spheroid co-culture system follow-
ing prolonged ICI treatment (2–7 days). In contrast, 2D 

monolayer cultures maintained consistently high viabil-
ity throughout the treatment period (Fig. S3B, Support-
ing Information). This differential response may stem 
from potential activation-induced phenotypic changes 
in Jurkat cells under extended 3D co-culture conditions, 
and the enhanced cell-cell interactions intrinsic to the 
3D spheroid architecture, which likely promote immune 
synapse formation and amplify cytotoxic effects. Fur-
thermore, the high viability of MDA-MB-231 cells in 2D 
monolayer cultures treated with the same ICIs suggests 
minimal cytotoxicity of ICIs toward these cells (Fig. S4, 
Supporting Information).

To evaluate immune-mediated cytotoxicity, we quan-
tified key cytokines (IFN-γ, IL-1β, and IL-6) in 3D co-
culture spheroids and 2D culture supernatants after 2, 4, 
and 7 days of treatment with Atezolizumab, Nivolumab, 
Tremelimumab, or Epirubicin. The concentration of 
the cytokines was represented from the fluorescence 
intensity of the captured cytokines labeled with the flu-
orescence detection antibodies (Fig. S5A, supporting 

Fig. 3 Viability of MDA-MB-231 and Jurkat cells in 3D and 2D models after drug treatments. A. Fluorescence microscopy images of co-cultured cells 
stained with a Live/Dead assay after two days of drug treatments for Atezolizumab, Nivolumab, Tremelimumab, and Epirubicin at 1 × 10− 2 mg/mL and 
for Epirubicin at 0, 1 × 10− 5, 1 × 10− 4, 1 × 10− 3, and 1 × 10− 2 mg/mL in 2D (A) and 3D (B) formats. Scale bars in A = 100 μm, and in B = 300 μm. C. Viability of 
MDA-MB-231 and Jurkat cells in 3D and 2D models for two-day drug treatments at 1 × 10− 2 mg/mL. Data were analyzed from 60 spheroids and triplicates 
in 96-well plates for 3D and 2D models, respectively. D. Viability of MDA-MB-231 and Jurkat cells in 3D and 2D models for two-day drug treatment of Epi-
rubicin at 0, 1 × 10− 5, 1 × 10− 4, 1 × 10− 3, and 1 × 10− 2 mg/mL. E. Viability of cells in 3D spheroids for drug treatments at 2, 4, and 7 days. Data are presented 
as the mean ± standard deviation. Statistical significance was determined using Student’s t-test: n.s. for p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. One-way 
ANOVA test for viability grouped by the same drug in panel E: p > 0.05 for n.s. and p < 0.05 for unmarked data

 



Page 9 of 15Wang et al. Journal of Nanobiotechnology          (2025) 23:411 

information). As expected, IFN-γ was undetectable in 
both culture systems, consistent with reports that Jur-
kat T cells only produce IFN-γ upon phorbol myristate 
acetate (PMA)/ionomycin stimulation [48, 49]. In con-
trast, IL-6 was elevated in both 3D and 2D cultures, 
while IL-1β was specifically upregulated in 3D spher-
oids (Fig. S5, supporting information). Cytokine secre-
tion (IL-6 and IL-1β) declined over time with prolonged 
drug exposure. Notably, Atezolizumab treatment sig-
nificantly increased both IL-6 and IL-1β levels compared 
to untreated controls, suggesting a pro-inflammatory 
response. Conversely, Tremelimumab reduced secretion 
of these cytokines, implicating an anti-inflammatory role. 
In contrast, cytokine secretion was dramatically reduced 
in both 3D and 2D cultured cells upon Epirubicin treat-
ment, highlighting the drug’s nonspecific cytotoxicity 
toward immune and tumor cells.

Dynamic secretion of extracellular vesicles and its 
predictive validity of cell viability for ICI treatments
To investigate the predictive capability of EVs in evaluat-
ing ICI treatments, we developed a method to establish 
a correlation between the secreted EVs and the viability 
of co-cultured spheroids in response to drug treatments. 
The EVs secreted from individual co-cultured spheroids 
were captured by various antibodies (CD9, CD63, CD81, 
PD-1, and PD-L1) immobilized on a glass slide function-
alized with graphene oxide quantum dots (GOQDs), as 
previously reported [50–52]. The GOQDs on the glass 
were used to immobilize the antibodies and minimize 
background noise from the fluorescent signals. Various 
capture antibodies were introduced through a set of par-
allel microchannels (20 μm in width and 30 μm in depth) 
above the GOQD-modified glass slide, where they were 
adsorbed, forming barcode-like antibody stripes. The 
design of the microfluidic channels for antibody immo-
bilization and the uniformity of antibody capture on the 
slide were demonstrated in Fig. S1 (Supporting Informa-
tion). A fluorescent IgG solution was incubated to inter-
act with the capture antibodies immobilized on the glass 
slide, thereby enabling the quantification of their density. 
The relative standard deviation (RSD) of IgG fluores-
cence intensity for all capture antibodies was below 15%. 
This method facilitates the application of multiple cap-
ture antibodies above individual spheroids, enabling the 
simultaneous detection of multiple types of EVs from a 
single spheroid.

A fluorescently labeled antibody (CD63), a typical 
membrane protein on EVs [22], was incubated to bind 
to the captured EVs on the slide, allowing quantification 
of EVs based on the fluorescence intensity of CD63. Fig-
ure  4A shows the fluorescence pattern of the detection 
antibodies conjugated on EVs secreted from individual 
spheroids. To verify the capture of EVs on the barcode 

glass slide, the slide was imaged using scanning electron 
microscopy (SEM), as shown in Fig. 4B. The EVs captured 
on the barcode glass slide exhibited a size distribution 
primarily in the range of 90–400  nm in diameter, with 
52% of EVs in the range < 200  nm, categorized as small 
extracellular vesicles (sEVs) [53]. To confirm that serum-
derived EVs do not interfere with our detection, we com-
pared EVs isolated from spheroid-containing microwells 
with those from cell-free microwells (Fig. S6, Supporting 
Information). The results demonstrate that serum EVs 
have negligible background effects on the detection of 
spheroid-secreted EVs.

To explore the temporal changes in EV secretion for 
individual spheroids, the EV quantity was examined for 
an enrichment time of 8, 16, and 24 h after two days of 
drug treatments. The statistical distribution of fluores-
cent intensity for EVs (captured by CD9, CD63, CD81, 
PD-1, and PD-L1 antibodies) from treatments with four 
drugs and the non-treated control condition is plotted in 
Fig. 4C (left scale). To normalize EV secretion levels, we 
defined a secretion change factor as the ratio between the 
difference in average fluorescence intensity for treated 
and untreated spheroids and that for untreated spher-
oids. The variation in secretion change factor of co-
cultured spheroids treated with four drugs at different 
EV enrichment times is shown in Fig.  4C (right scale). 
A positive value of the secretion change factor indicates 
increased EV secretion, while a negative value indi-
cates decreased secretion. For CD63-expressed EVs, the 
secretion change factor significantly increased as the EV 
enrichment time increased from 8 h to 24 h for all four 
drugs. The average fluorescent intensity and the secretion 
change factor of EVs secreted from the spheroids treated 
with different drug conditions for various treatment and 
enrichment durations were presented in Table S1 and S2 
(supporting information), respectively. The duration of 
drug treatment is another factor influencing EV secre-
tion levels. Drug treatment times of 2, 4, and 7 days were 
applied to co-cultured spheroids for EV enrichment of 
16 h. Figure 4D (left scale) shows the statistical distribu-
tion of fluorescent intensity for the detected EVs after 
drug treatments of varying durations for four drugs and 
the control condition. The secretion change factor of co-
cultured spheroids for different drug treatment times is 
plotted in Fig. 4D (right scale). The secretion change fac-
tor of PD-L1-expressing EVs decreased as the drug treat-
ment time increased for all four drugs.

To explore the ability of EV secretion to predict cell via-
bility, several machine learning models were established, 
including linear regression, non-linear regression, and 
logistic regression, for our co-cultured spheroid model 
using four types of drugs. The secretion change factor 
of EVs expressing CD9, CD63, CD81, PD-1, and PD-L1, 
the drug type, and the drug treatment time were defined 
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as independent variables, and the viability of co-cul-
tured spheroids was defined as the dependent variable. 
To validate our machine learning models for predict-
ing untrained datasets, several drugs different than the 
ones in the training set were selected in the test set. 
The spheroids treated with Atezolizumab (anti-PD-L1), 
Nivolumab (anti-PD-1), Tremelimumab (anti-CTLA-4), 
Epirubicin (chemotherapeutic drug), and control were 
used as the training group, and the spheroids treated 

with Sugemalimab (anti-PD-L1), Pembrolizumab (anti-
PD-1), Cadonilimab (anti-CTLA-4), Dacarbazine (che-
motherapeutic drug), and control were used as the test 
set. The secretion change factors and cell viability for the 
spheroids in the test set are shown in Fig. S7 (Supporting 
Information).

Figure 4E shows the actual viability of spheroids plot-
ted against predicted viability for the training and test 
sets using a linear regression model. The gray dotted line 

Fig. 4 Secretion change of EVs and its capability in predicting cell viability in this platform. (A) Representative fluorescence images of the secreted EVs 
captured and detected on a 2D functionalized glass slide for individual spheroids. The scale bars represent 300 μm for the larger image and 100 μm for the 
inset images. (B) Scanning electron microscopy (SEM) images of the EVs captured by the barcode slide, alongside the EV size distribution. C, D: Fluorescent 
intensity (left scale) and secretion change factors (right scale) of the EVs carrying CD9, CD63, CD81, PD-1, and PD-L1 secreted from co-cultured spheroids 
under the drug treatments with Atezolizumab, Nivolumab, Tremelimumab, Epirubicin (1 × 10− 2 mg/mL) and control conditions. Data are shown for differ-
ent EV enrichment times in C and different drug treatment durations in D. E, F: The actual viability plotted against the predicted viability of the spheroids 
for the training set and test set using a linear regression algorithm (E) and a non-linear regression algorithm (F). The training set was derived from the 
average viability of spheroids under drug treatments of Atezolizumab, Nivolumab, Tremelimumab, Epirubicin, and control condition over 2, 4, and 7 days. 
The test set was based on the average viability of spheroids under drug treatments with Sugemalimab, Pembrolizumab, Cadonilimab, Dacarbazine, and 
control conditions for 4 days. G. Receiver operating characteristic (ROC) curves obtained using a logistic regression algorithm to classify cell viability into 
two categories: 1 (0.7-1.0) and 2 (0-0.7). H. Confusion matrix for the training and test sets analyzed by the logistic regression model shown in G
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Fig. 5 (See legend on next page.)
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represents data where actual viability equals predicted 
viability. Each treatment condition for data points in the 
test set is annotated in Fig. 4E. It is found that when only 
the secretion change factor of PD-L1-expressing EVs and 
drug type were selected as independent variables, the 
coefficient of determination (R²) reached 0.9633 with 
p < 0.05 for both variables. The weights of each indepen-
dent variable were estimated using a least square estima-
tor. The estimated parameters and standard errors for 
each term are listed in Table S3 (Supporting Informa-
tion), and the parameter for the secretion change factor 
of EVs carrying PD-L1 was the largest among all param-
eters. Therefore, the secretion change of PD-L1-express-
ing EVs is the optimal predictive factor for the treatment 
outcome of ICI and chemotherapeutic drugs in the linear 
regression model. Furthermore, the positive sign of the 
parameter associated with PD-L1 indicates a direct posi-
tive correlation between cell viability and the secretion 
change of PD-L1-expressing EVs. Cell viability was also 
predicted using a non-linear regression machine learning 
model with a hyperbolic tangent function and one hid-
den layer with 10 nodes. Figure 4F shows the actual cell 
viability plotted against predicted viability for the train-
ing and test sets using the non-linear regression model. 
The R² values for the training and test sets were 0.9839 
and 0.9212, respectively, indicating better performance 
in predicting cell viability compared to the linear regres-
sion model. A logistic regression model was also applied 
to classify cell viability into two levels: 1 (0.7–1.0) and 2 
(0–0.7). When only the secretion change factor of PD-
L1-expressing EVs was defined as the independent vari-
able, logistic regression showed optimal performance. 
The receiver operating characteristic (ROC) curves for 
the logistic regression model are shown in Fig.  4G. The 
ROC curve illustrates how the true positive rate (sensitiv-
ity) changes with the false positive rate (1 - specificity) for 
different cut-offs of the independent variable. The area 
under the curve (AUC) value indicates the model’s abil-
ity to distinguish between the two categories of viability. 
The AUC for viability classification was 1 for the train-
ing set (training-1 and training-2) and 0.75 for the test set 
(test-1 and test-2). The confusion matrix obtained from 
the logistic regression analysis for the training and test 
sets is presented in Fig. 4H.

To summarize, cell viability in the untrained test set 
can be predicted based on the EV secretion change factor 
from the training set using a linear, non-linear, or logis-
tic regression model. Although the non-linear regression 
model demonstrates the best predictive performance, it 
is challenging to assess the contribution of each variable 
to the overall prediction accuracy from the non-linear 
regression. In contrast, linear regression provides a direct 
evaluation of the contribution of each variable through 
the estimated parameters. Both linear and logistic regres-
sion analyses revealed that the secretion change of EVs 
carrying PD-L1 is the most significant contributor to pre-
dicting cell viability.

Temporal change of transcriptome expression for 
co-cultured spheroids under drug treatments
To explore the molecular mechanisms underlying the 
temporal changes in EV secretion after drug treatments, 
we performed RNA sequencing on cells from the co-cul-
tured spheroids treated with Atezolizumab, Nivolumab, 
Tremelimumab, and Epirubicin, with no treatment as a 
control, for 2, 4, and 7 days. Figure 5A shows the work-
flow for sample preparation for RNA sequencing, starting 
from cell extraction from individual rows of spheroids 
under different treatment conditions. After cell lysis and 
mRNA purification, the sample solutions were prepared 
for RNA sequencing. Figure 5B presents the distribution 
of all samples along three dimensions based on their gene 
expression after Principal Component Analysis (PCA). 
The Venn diagram in Fig. 5C shows the differential gene 
expression for the four drugs compared to the control 
group after 7 days of treatment. The number of non-
overlapping differentially expressed genes for spheroids 
treated with Atezolizumab, Nivolumab, Tremelimumab, 
and Epirubicin compared to the control condition was 
3071, 469, 103, and 2352, respectively. The Venn diagram 
of the differential genes for the four drugs compared to 
the control group after 2-day and 4-day treatments is 
shown in Fig. S8A (Supporting Information). The corre-
lations between different samples are plotted in Fig. S8B 
(Supporting Information).

To investigate the signaling pathways under differ-
ent drug treatment conditions, we analyzed the RNA 
sequencing data via Kyoto Encyclopedia of Genes and 

(See figure on previous page.)
Fig. 5 RNA sequencing and differential gene expression analysis of the spheroids under different drug treatment conditions. (A) Schematic of cell isola-
tion from the chip, mRNA purification, and RNA sequencing process used in the study. (B) The principle component analysis (PCA) of sequencing data 
from spheroids under treatment of Atezolizumab (A), Nivolumab (N), Tremelimumab (T), and Epirubicin (E), and non-treatment control (C) for 2, 4, and 7 
days. (C) Venn diagram of differentially expressed genes among all groups for 7-day drug treatments. RNA sequencing and differential gene expression 
analysis revealed enrichment of 6549, 3656, 276, and 3310 genes for the treatment of Atezolizumab, Nivolumab, Tremelimumab, and Epirubicin, respec-
tively, compared to the control group. (D) KEGG pathway clustering revealed differential presence of immune-related pathways among groups relative 
to the control group for different treatment conditions. (E) Volcano plots showing differentially expressed genes for all 7-day drug treatment groups 
relative to the control group (black dots). Red dots signify genes in immune-related pathways in D. (F) Heatmap showing expression of genes normalized 
as R log2(FPKM + 1) belonging to the pathways depicted in D. (G) Correlations between secretion change factor of EVs and expression levels of genes (R 
log2(FPKM + 1)). The color and size of the circles indicate the value of Kendall’s correlation coefficient. *p < 0.05
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Genomes (KEGG) pathway clustering. We found that the 
pathways related to PD-1 and PD-L1 inhibition, includ-
ing PD-1 and PD-L1 checkpoint (KEGG: 05235), MAPK 
(KEGG: 04010), PI3K-Akt (KEGG: 04151), EGFR tyro-
sine kinase inhibitor resistance (KEGG: 01521), and 
cytokine-cytokine receptor interaction (KEGG: 04060), 
were upregulated (Fig.  5D). The -log10(P value) of each 
sample indicates the activation significance of the afore-
mentioned signaling pathways under different treat-
ment conditions. Generally, samples treated for 7 days 
showed higher activation of these signaling pathways 
than those treated for 2 or 4 days. To visualize the regu-
lation of the genes involved in these signaling pathways, 
we present volcano plots for all genes (black dots) and 
highlight the representative genes (red dots) involved 
in these pathways for the 7-day treatment samples in 
Fig. 5E. The volcano plots for the 2-day and 4-day treat-
ments are presented in Fig. S8C (Supporting Informa-
tion). The expression of the selected genes in these 
signaling pathways is shown in Fig.  5F. The expression 
of each gene was normalized using the R log2(FPKM + 1) 
method, which is defined as the ratio of the difference in 
log2(FPKM + 1) between drug-treated and control sam-
ples to the log2(FPKM + 1) of the control sample, where 
FPKM (Fragments Per Kilobase of transcript per Mil-
lion mapped reads) is a normalization method for gene 
expression level. The FPKM values of these selected genes 
were listed in Table S4 (supporting information). The R 
log2(FPKM + 1) showed more pronounced changes for 
the 7-day treatment samples compared to the 2-day and 
4-day treatment samples, suggesting increased activation 
of the signaling pathways regulating PD-1 and PD-L1 
inhibition from 2 to 7 days of treatment. Specifically, the 
expression level of PD-L1 (CD274) decreased from day 2 
to day 7, which is consistent with the trend observed in 
the secretion changes of EVs carrying PD-L1 (Fig. 4D).

Finally, to explore the correlation between gene expres-
sion and EV secretion, we calculated the correlation coef-
ficients between the expression levels (R log2(FPKM + 1)) 
of selected PD-1 and PD-L1-related genes and the secre-
tion change factor of EVs across five surface markers 
(CD9, CD63, CD81, PD-1, and PD-L1) under different 
treatment conditions (Fig. 5G). Among the five markers, 
EVs carrying PD-L1 exhibited the greatest number of sig-
nificant correlations with the selected genes, highlighting 
the importance of PD-L1 in the regulation of PD-1 and 
PD-L1-related gene expressions.

Conclusion
To address the spatial and temporal variations in the 
distribution of circulating extracellular vesicles (EVs) 
and identify effective biomarkers for immune check-
point inhibitor (ICI) therapies, we developed an innova-
tive platform for in situ detection of EVs secreted from 

individual co-cultured spheroids at multiple time points. 
This platform integrates a multiplex EV-detection bar-
code slide, enabling the quantification of EV secre-
tion dynamics from single spheroids in response to 
various drug treatments. By combining this approach 
with machine learning models, we validated the pre-
dictive capacity of EVs in determining cellular viability 
under different treatment conditions.

Our platform is the first to enable in situ and dynamic 
monitoring of multi-EV secretion at the single spheroid 
level, capturing dynamic changes in EV secretion across 
both space and time. Using this system, we developed 
predictive models—including linear, non-linear, and 
logistic regression—based on correlations between cell 
viability and changes in EV secretion. Notably, changes in 
the secretion of PD-L1-expressing EVs showed the stron-
gest correlation with cell viability under drug treatments, 
highlighting their potential as predictive biomarkers for 
assessing immunotherapeutic efficacy.

Further validation through RNA sequencing revealed 
that the expression of these EVs dynamically varies at 
specific time points of drug treatment, providing a tem-
poral understanding of EV-mediated responses to treat-
ment. This work not only advances the discovery of EV 
biomarkers for ICI therapies but also offers insights into 
novel strategies to overcome therapeutic resistance.

Our platform not only isolates specific EV contribu-
tions but also offers a scalable framework for transition-
ing to physiologically relevant systems. Future iterations 
incorporating patient-derived organoids will enable com-
prehensive evaluation of EV biomarkers across chemo-, 
targeted, and combination therapies, facilitating patient-
specific response profiling. Furthermore, by integrating 
diverse immune cell populations (e.g., CD4+/CD8 + T 
cells, NK cells, macrophages, and Tregs) alongside mul-
tifaceted physicochemical gradients (such as hypoxia and 
nutrient deprivation), we can conduct mechanistic stud-
ies within complex tissue architectures—bridging the gap 
between foundational research and clinical translation. 
In addition, the low expression of CTLA-4 in Jurkat cells 
restricts our ability to evaluate the drug’s direct inter-
action with its target receptor, including downstream 
checkpoint regulation (e.g., CD28 co-stimulation or PD-1 
cross-talk). Future studies employing CTLA-4 + primary 
T cells or gene-edited Jurkat models would strengthen 
these findings.
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