

View

Online


Export
Citation

RESEARCH ARTICLE |  SEPTEMBER 08 2023

Machine learning enhanced droplet microfluidics 
Claire Barnes  ; Ashish R. Sonwane (आीशर सोनवने)  ; Eva C. Sonnenschein  ; Francesco Del Giudice  

Physics of Fluids 35, 092003 (2023)
https://doi.org/10.1063/5.0163806

Articles You May Be Interested In

Confinement effect on the viscoelastic particle ordering in microfluidic flows: Numerical simulations and
experiments

Physics of Fluids (April 2022)

 31 January 2025 10:26:27

https://pubs.aip.org/aip/pof/article/35/9/092003/2909988/Machine-learning-enhanced-droplet-microfluidics
https://pubs.aip.org/aip/pof/article/35/9/092003/2909988/Machine-learning-enhanced-droplet-microfluidics?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0003-1031-7127
javascript:;
https://orcid.org/0000-0001-8241-2399
javascript:;
https://orcid.org/0000-0001-6959-5100
javascript:;
https://orcid.org/0000-0002-9414-6937
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0163806&domain=pdf&date_stamp=2023-09-08
https://doi.org/10.1063/5.0163806
https://pubs.aip.org/aip/pof/article/34/4/042015/2844486/Confinement-effect-on-the-viscoelastic-particle
https://e-11492.adzerk.net/r?e=_dXRtX3NvdXJjZT1wZGYtZG93bmxvYWRzJnV0bV9tZWRpdW09YmFubmVyJnV0bV9jYW1wYWlnbj1IQV9QT0ZfU1QrT3Blbitmb3IrU3Vic19QREZfMjAyNCJ9&s=C5pLRpZHgq1MHrstZmh4rOqwWhc


Machine learning enhanced droplet
microfluidics

Cite as: Phys. Fluids 35, 092003 (2023); doi: 10.1063/5.0163806
Submitted: 19 June 2023 . Accepted: 17 August 2023 .
Published Online: 8 September 2023

Claire Barnes,1 Ashish R. Sonwane ( ),2 Eva C. Sonnenschein,3 and Francesco Del Giudice4,a)

AFFILIATIONS
1Department of Biomedical Engineering, Faculty of Science and Engineering, School of Engineering and Applied Science,
Swansea University, Fabian Way, Swansea SA1 8EN, United Kingdom
2Computational Foundry, Faculty of Science and Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, United Kingdom
3Department of Biosciences, Faculty of Science and Engineering, School of Biosciences, Geography and Physiscs,
Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom

4Department of Chemical Engineering, Faculty of Science and Engineering, School of Engineering and Applied Science,
Swansea University, FabianWay, Swansea SA1 8EN, United Kingdom

a)Author to whom correspondence should be addressed: francesco.delgiudice@swansea.ac.uk

ABSTRACT

Machine learning has recently been introduced in the context of droplet microfluidics to simplify the process of droplet formation, which is
usually controlled by a variety of parameters. However, the studies introduced so far have mainly focused on droplet size control using water
and mineral oil in microfluidic devices fabricated using soft lithography or rapid prototyping. This approach negated the applicability of
machine learning results to other types of fluids more relevant to biomedical applications, while also preventing users that do not have access to
microfluidic fabrication facilities to take advantage of previous findings. There are a number of different algorithms that could be used as part
of a data driven approach, and no clear comparison has been previously offered among multiple machine learning architectures with respect to
the predictions of flow rate values and generation rate. We here employed machine learning to predict the experimental parameters required
for droplet generation in three commercialized microfluidic flow-focusing devices using phosphate buffer saline and biocompatible fluorinated
oil as dispersed and continuous liquid phases, respectively. We compared three different machine learning architectures and established the one
leading to more accurate predictions. We also compared the predictions with a new set of experiments performed at a different day to account
for experimental variability. Finally, we provided a proof of concept related to algae encapsulation and designed a simple app that can be used
to generate accurate predictions for a given droplet size and generation rate across the three commercial devices.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0163806

I. INTRODUCTION

The formation of droplets in microfluidic devices has been the
subject of significant interest in the past few decades1–3 for many
applications such as single-cell analysis,4 spheroids and organoids pro-
duction,5 and digital polymerase chain reaction (PCR).6 The droplet
formation mechanism in micrometre-scale devices is a complex phe-
nomenon controlled by several parameters,3,7–11 including surface ten-
sion, viscosity of the two non-miscible liquids, surface wetting
properties, inertia, elasticity, addition of surfactant to either of the two
liquid phases, and device geometry. Such complexity has so far pre-
vented the establishment of a universal framework for the production
of droplets in microfluidic devices, while the best approach is to empir-
ically derive some scaling arguments that can only be applied within

the experimental configurations presented in the study (see, for
instance, the following articles12,13 and references therein).

Machine learning (ML) and artificial intelligence (AI) have
recently emerged as a very powerful tool to identify patterns across a
complex set of data and to then deploy models to act on the data in a
human-like manner but on a very short timescale.14–16 ML and AI
are sometimes used as synonyms, but they are different:17,18 AI is
capable of acting on a large set of data in order to trigger decisions
on a short amount of time; ML is instead a class of AI-based meth-
odologies that enable algorithms to learn without direct program-
ing.15 For instance, Nitta et al.19 have employed ML to train the
algorithm to recognize several populations of flowing cells in micro-
fluidic devices; after recognition of the cell population type, the AI
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activated a deflector in the microfluidic device to sort cells according
to a specific target.

Considering its power, it is not a surprise that ML has been used
in the attempt of tackling the problem of droplet formation in micro-
fluidic devices.17,20 Most studies21–25 have combined ML with the
dimensional analysis in order to predict the experimental parameters
required to produce droplets of a given size. Chagot et al.26 employed
ML to establish the effect of surfactant concentration on the size of
water-in-oil droplets formed in flow-focusing configuration. ML has
also been used in the context of droplet characterization,27,28 sorting,29

microrheology with optical tweezers,30 bubble motion,31 droplet track-
ing,27 computational fluid dynamics (CFD),32 and experimental opti-
mization for digital microfluidic applications.33 However, the droplet
microfluidic studies introduced earlier have been limited in their anal-
ysis, most often not allowing the user to depart from spherical droplets
nor enabling selection of the droplet generation rate, which is an
essential parameter, especially in the context of encapsulation.3

Recently, Lashkaripour et al.34 presented a detailed study where ML
was employed to derive the dimensions of a flow-focusing microfluidic
device and the experimental volumetric flow rate values required to
produce droplets of a given size at a given generation rate, both pre-
selected by the user. The authors also enabled the possibility to upload
a new set of data to generate new predictions based on the require-
ments from the users, who may need to employ a combination of flu-
ids different from the water and mineral oil presented in the study.

Despite the progresses made in the area of ML applied to droplet
microfluidics, there are still some unaddressed problems. First, the
majority of studies focused on the simple combination of water and
mineral oil, which is not the preferred combination of liquids
employed in biomedical applications, where fluorinated oil and phos-
phate buffer saline (PBS) are generally preferred.35 Second, most of the
studies relied on the possibility for the users to have access to micro-
fluidic fabrication facilities, something that is not always true and that
can hinder deployment of microfluidic solutions in remote areas.
Finally, many of the papers published so far used and optimized a sin-
gle architecture based on previous works or preference. A comparison
between different approaches is essential, particularly for future work
that may consider more parameters or more complex fluids.

In this work, we employed ML to predict the experimental
parameters required for droplet generation in commercialized micro-
fluidic devices using PBS and fluorinated oil as dispersed and continu-
ous liquid phases, respectively. We compared the accuracy of three
ML architectures in predicting the experimental conditions to obtain
droplets of a given size and generation rate. We also provided a proof
of concept related to the encapsulation of algae in both PBS and algae
media. Finally, we developed a simple standalone app that can be used
locally in conjunction with commercial microfluidic devices to predict
the values of the volumetric flow rate of both the continuous and dis-
persed phases required to obtain droplets having a pre-determined
size and generation rate.

II. MATERIALS ANDMETHODS
A. Sample preparation and characterization

We employed phosphate buffer saline (PBS, Sigma Aldrich UK)
as the dispersed phase and fluorinated oil FluoSurf 2wt. % in HFE
7500 (Dolomite Microfluidics, UK) as the continuous phase. We used
a force tensiometer (Biolin scientific) to measure the interfacial tension

c between the FluoSurf and the PBS at room temperature
(T ¼ 20 �C), obtaining a value of c ¼ 3:3961:09 mN/m. The viscos-
ity of the FluoSurf at 20 �C was evaluated using a Twin Drive rheome-
ter working in a strain-controlled mode (Anton Paar MCR702)
equipped with a 50mm cone and plate metal configuration, obtaining
a constant value of lc ¼ 1:56mPa s.

B. Experimental setup

We employed three commercially available microfluidic flow-
focusing devices (Dolomite Microfluidics, UK) having three etching
depths, namely, 100 lm (part 3200512), 190lm (part 3200506), and
275 lm (part 3200824), all having a fluorophilic coating on their surfa-
ces, meaning that they could be used for the production of aqueous
droplets when the continuous phase was fluorophillic (Fig. 1).

The flow was controlled using a syringe pump having two inde-
pendent flow units and also a pressure sensor on each flow stream
(Dolomite Quad Pumps), equipped with the Mitos Quad Pump Green

FIG. 1. (a) Schematic representation of the microfluidic flow-focusing devices
employed here. Three different commercially available devices having different val-
ues of both orifice width W and channel etching height h are used. The dispersed
phase is made of phosphate buffer saline (PBS), while the continuous phase is a
FluoSurf 2 wt. % emulsion stabilizer. When the two phases meet at the junction, a
droplet having length L and height H is formed. The flow direction is from left to
right. Dimensions are not to scale. (b) Experimental apparatus in the laboratory.
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syringe pairs (Dolomite Microfluidics), with a lower flow rate limit of
5ll/min and an upper limit of 1250 l l/min. The advantage of this
system was the possibility of generating a continuous flow of liquids
taken from a reservoir at a constant volumetric flow rate (at variance
with more traditional syringe pumps that require the syringes to be
filled in as soon as the liquid in the syringe ends), while also simulta-
neously enabling the measurement of the overall pressure drop in the
system. This approach was essential to monitor pressure drop variations
and accumulation points of pressure that could bias the accuracy and
reliability of the experimental data set.36,37 The lower end of the volu-
metric flow rate was 5ll/min for both the dispersed or continuous
phases (this was set by the type of syringes employed), while the upper
flow rate limit was reached when the overall pressure drop for either of
the two flow streams reached 10 bars which, in our experiments,
roughly corresponded to a volumetric flow rate of 120 ll/min.
According to the manufacturer, the maximum pressure tolerable by the
microfluidic device was 25 bars, meaning that when the volumetric
flow rates of the two streams were equal to 120 ll/min, the overall pres-
sure drop was around 20 bars, close to the device limit. In the case of
overpressure, the flow was automatically arrested by the syringe pumps.

The connections between the microfluidic device and the syringe
pumps were made of fluorinated ethylene propylene (FEP) commer-
cially available tubing with an internal diameter of 100lm and an
external diameter of 1.6mm (Dolomite Microfluidics). The choice of
the internal diameter of the tube was driven by the requirement to
obtain a stable flow at flow rate values of 5ll/min, which was the
lower end investigated here for both flow streams. We observed that
the droplet formation at the junction for flow rate values of 5 ll/min
was unstable when employing the same FEP tube having an internal
diameter of either 800 or 250 lm (data not showed). The reason for
such a phenomenon was the fact that the overall pressure drop in the
system (given by the sum of the pressure drops in the tubing and the
device) was comparable with the pressure drop at the junction where
droplet formation occurred, thus causing significant fluctuations in
the flow, in line with well-established findings in the literature.38

The flow in the microfluidic channel was observed using an
inverted microscope (Zeiss Primovert) connected to a high-speed
camera (Photron Mini Ux-50) with videos acquired at frame rate val-
ues varying between 125 and 8000 fps. The recorded videos were man-
ually analyzed with droplets annotated using Matlab to derive the
droplet length L, the droplet height H, and the generation frequency f;
a minimum of 20 droplets per case was analyzed: this was deemed suf-
ficient as the droplet size and frequency remained constant for the
whole duration of the experiment, as also expected in droplet micro-
fluidic applications.10

C. Machine learning architectures

Three machine learning architectures, labeled as architecture 1,
architecture 2, and architecture 3 were compared in this study (Fig. 2).
Architecture 1 was made of a series of two neural networks with three
hidden layers.

The layers consisted of a number of nodes and associated activa-
tion functions (in our case reLU) to determine the importance of a
particular neuron when predicting the output. The layers were con-
nected to each other via weights, which were subsequently updated
during the learning process. The application of hidden layers enabled

the network to account for dependency between variables along with
complex relationships between input and output parameters.

Our overall challenge was summarized by a multi-output regres-
sion task, and therefore, the number of target variables was set at the
number of nodes in the output layer. Hereafter, we will refer to the
input parameters as those required by the user (e.g., droplet size), while
the output parameters will always refer to the predictions made by the
machine learning (e.g., volumetric flow rate values).

The operating principle of architecture 1 is described in Fig. 2(a).
First, the droplet length L and the droplet height H were used as input
parameters to then predict the volumetric flow rate values of both con-
tinuous (Qc) and dispersed (Qd) phases. After this first step, the values
of Qc and Qd estimated from the first neural network, together with
the droplet length L, were fed as inputs into a second neural network
to predict the value of the droplet generation frequency f. In practical
terms, architecture 1 enabled the prediction of Qd, Qc, and f, given an
initial set of input related to droplet length L and droplet height H.
This meant that the generation frequency f could not be specified by
the user a priori, but it could only be the result of the neural network.

Architecture 2 took a sequential modeling approach based on
standard vector regression (SVR), which practically means an architec-
ture based on the fitting of the training data [Fig. 2(b)]. Via the use of
kernels, the algorithm could fit a hyperplane in high-dimensional
space [green line in Fig. 2(b)], which could be used to estimate the
relationship between the input and output parameters. Architecture 2
was easily able to deal with correlations between output variables;
however, its success was dependent on the order of chained regres-
sions. Here, L and H were employed as input parameters (similarly to
architecture 1), but only Qd was predicted via the first SVR.
Furthermore, the predicted value of Qd was employed together with
the original input parameters to predict Qc using a second SVR.
Finally, L, Qc, and Qd were used to predict the value of f. This architec-
ture was very rudimentary and did not rely on neural networks.

Architecture 3 was a single neural network presenting L, H, and f
as input parameters and Qc and Qd as output parameters [Fig. 2(c)].
Architecture 3 was the most flexible among the three with respect to
droplet microfluidic applications, as it enabled the user to set a priori
droplet length, height, and generation frequency. The reliability of
each architecture with respect to either the ground truth data (droplet
size) or the mass balance (generation frequency) was assessed using
the coefficient of determination R2.

The choice of these architectures rested on some considerations
made in relation to the existing state of the art. Machine learning algo-
rithms similar to architectures 1 and 3 have been used separately in
different studies but, to the best of our knowledge, they have never
been directly compared. Such comparison is important to elucidate
whether training the algorithm with the droplet generation frequency
is desirable or not. Additionally, we wanted to see whether a neural
network was required at all to enhance droplet microfluidic applica-
tion: for this reason, we tested architecture 2, which is based on an
advanced fitting, rather than a neural network.

D. Algae encapsulation experiments

Tetraselmis suecica CCAP 66 = 4 was obtained from the culture
collection of algae and protozoa (CCAP) and cultivated in f=2
medium39 prepared with seawater at 18 �C and 80 lmolm�2 s�1 con-
stant light and shaken at 90 rpm. We used the force tensiometer
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described earlier (Biolin scientific) to measure the interfacial tension c
between the FluoSurf and the algae medium at room temperature
(T ¼ 20 �C), obtaining a value of c ¼ 8:696 0:15 mN/m.

The same experimental apparatus described before was used for
the algae encapsulation experiments. For encapsulation in the algae
media, the solution containing algae was employed as the disperse
phase, and the experimental values of Qc and Qd were evaluated via
architecture 3. For the experiments in phosphate buffer saline (PBS),
the algae where first centrifuged using a micro-centrifuge, the media
was removed using a pipette, and then the algae were re-suspended in
the PBS, that was subsequently employed as the dispersed phase for
the encapsulation experiments. The droplets generated were then col-
lected on a Sedgewick rafter counting chamber, closed with a coverslip,
and sealed within a petri-dish to prevent droplet evaporation.

E. App for droplet generation

To support this work, we designed a user-friendly graphical inter-
face (GUI), enabling the user to easily predict the necessary flow con-
ditions required to produce droplets of desired dimensions. Our app
also enables the user to retrain our architectures using their own
experimental data and use these to make predictions. The app was
designed to tackle some of the common challenges associated with the
task of droplet formation and, therefore, promote greater adoption
within the microfluidic community. The GUI was developed using
Rust, a multi-paradigm, general-purpose programing language that
became prominent in the software industry in recent years due to the
advantages of memory safety and better performance for certain tasks.
All AI models were developed and trained using Tensorflow and
Keras. The code for these steps was written in Python and called by

FIG. 2. Schematic representation of the
three architectures employed here. (a)
Architecture 1 is made of two neural net-
works in series, with L and H as inputs
and Qc and Qd as outputs. Furthermore,
L, Qc, and Qd are used again as input
parameters to the second identical neural
network to predict f. (b) Architecture 2 is
based on a series of standard vector
regressions (SVR) with workflow similar to
(a). (c) Architecture 3 is a single neural
network with L, H and f as inputs and Qc

and Qd as outputs.
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our application using PyO3, a rust library that provides bindings for a
Python interpreter.

III. RESULTS AND DISCUSSION
A. Generation of the ground truth

The set of data employed to train a machine learning algorithm
is generally called “ground truth” to make a clear distinction between
the experimental or simulation data employed for the training, which
are considered to be the “truth,” and the machine learning predictions.
Therefore, it was critical that the ground truth was made of a highly
reliable and reproducible dataset, or the predictions from the machine
learning algorithm could be incorrect.16,34 The formation of droplets
in microfluidic devices is a very complex problem, which can be
affected by several parameters, including pressure fluctuations, micro-
fluidic fabrication, and surface wetting.7–10 To minimize the impact of
fabrication techniques and channel wetting on the droplet formation
mechanism, we employed commercialized flow-focusing devices,
whose reproducibility is ensured by industrial quality standards, while
also reducing potential biases related to fabrication in different labora-
tory settings. Additionally, commercialized devices can be deployed in
areas where microfluidic fabrication techniques, such as soft lithogra-
phy,40 milling,41 or 3D printing,42,43 are not accessible.

We performed experiments in three fluorophilic microfluidic
devices with different etching height values h, all having a flow-
focusing configuration (Fig. 1), and then compared the results with
theoretical scaling laws available in the literature12,44 to gain confi-
dence in the reliability of the dataset as a whole. First, we identified the
droplet shapes that we could achieve in each microfluidic device [Fig.
3(a)]. For devices having an etching height of either 100 or 190lm, we
mainly observed circular droplets (from the top view), while more
elliptical-like droplets were observed in the channel with etching
height of 275lm. We then proceeded to verify the reliability of the
experimental dataset to be used as ground truth [Fig. 3(b)]. It has
recently been reported that, for either Newtonian12 or non-
Newtonian44 liquid droplets, it is possible to identify a universal trend
for the experimental data when plotting the droplet length L normal-
ized by the orifice widthW as a function of the ratio between the flow
rate ratio q and the Capillary number of the continuous phase Cac,
with q ¼ Qd=Qc, where Qd and Qc are the volumetric flow rates of the
dispersed phase and of the continuous phase, respectively, and Cac
defined as45 Cac ¼ lcUc=c, where lc is the viscosity of the continuous
phase, c is the interfacial tension between the two non-miscible liquids,
and Uc is the velocity of the continuous phase, defined as
Uc ¼ Qc=ðWhÞ. We observed that our data [Fig. 3(c)] qualitatively
followed the relation introduced by Chen et al.,12

L
W

¼ aþ b
qm

Canc

� �
; (1)

with the two parameters m¼ 0.45 and n¼ 0.35 fixed using the same
values recently reported in the literature,46 while the other two param-
eters a ¼ 0:78660:032 and b ¼ 0:1058560:0107, obtained via a best
fit of the data for the 100lm etched device. The data for the 100lm
etched device followed the scaling closely, as expected by the fitting,
while the other data obtained from the other two devices displayed
some deviations, similarly to results available in the literature.44 In
practical terms, the deviation of some experimental data from the
main fitting meant that a standard scaling curve could not be used to

predict the experimental values of Qc and Qd to actually obtain drop-
lets of a given length L, thus justifying the need of a machine learning
algorithm capable of identifying trends across several experimental
data. Moreover, the ability to generate ellipsoidal particles demon-
strated the versatility of our work in terms of applications and justifica-
tion for the use of L andH as opposed to a single droplet diameter or a
droplet volume, often employed in the literature.26,34

FIG. 3. (a) Droplet height H as a function of droplet length L for the three devices
employed in this work. (b) L/W, where W is the channel width, as a function of
q0:45=Ca0:35c , where q ¼ Qd=Qc , while Cac is the Capillary number of the continu-
ous phase (see the main text for the definition). The dashed line is a fitting with
a ¼ 0:78660:032 and b ¼ 0:055960:0056. (c) Experimental droplet generation
frequency f as a function of the f derived via the mass balance (see the text for
more details). The lines in (a) and (c) have a unitary slope and a null intercept.
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We also tested the reliability of the experimental dataset with
respect to the droplet generation frequency. Even though we could not
identify a general scaling for our experimental data (not shown), we
compared the experimental values of the droplet generation frequency
with the one calculated from a mass balance, similarly to an approach
adopted previously.34 In general, the frequency of droplet formation f
is linked to the flow rate of the dispersed phase Qd by the following
expression:

Qd ¼ Vd � f ; (2)

where Vd is the volume of the droplet, being Vd � L�H � h. We
found very good agreement between our experimental frequency data
and those obtained via Eq. (2) [Fig. 3(c)], with a coefficient of determi-
nation R2 � 0:8 for all the different devices.

Taken together, our results showed that the experimental dataset
derived in the three microfluidic flow-focusing devices was robust
enough to be employable as ground truth for the training of the
machine learning algorithms. We were justified in employing a

machine learning algorithm over a standard fitting procedure, as we
could not clearly identify a mastercurve describing all our experimen-
tal results with the data following the scaling only qualitatively.

B. Comparison among the different machine learning
algorithms

In this section, we analyzed the prediction efficacy of the three
architectures with respect to the ground truth data and the theoretical
scaling introduced in Sec. IIIA (Fig. 4).

First, we focused on the microfluidic device with 100 lm of etch-
ing depth and compared the flow rate ratio predicted by the machine
learning algorithm against the ground truth data [Fig. 4(a)]. We
employed NGT¼ 79 experimental points to train the three architec-
tures and observed that architecture 3 delivered the most accurate pre-
dictions, while architecture 2 provided the least accurate results. These
results are not surprising considering that architecture 3 presented the
droplet generation frequency f as input parameters, and f was linked to
Qd via Eq. (2). The addition of the experimental ground truth

FIG. 4. Accuracy of the three different machine learning architectures in terms of flow rate ratio values Qc=Qd , droplet length over orifice width L/W and frequency of droplet
generation f, for the three commercial microfluidic devices employed here, with etching depth of 100lm (a)–(c), 190 lm (d)–(f), and 275lm (g)–(i). ML stands for machine
learning and GT for ground truth.
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frequency in the model training facilitated a more accurate predictions
of the flow rate ratio required to achieve droplets of a given size.

Architecture 2 performed poorly, and this was also expected as
this approach was based on a chained regression. Errors made by the
algorithm when predicting Qd would essentially accumulate, leading
to a further deviation than typically expected when predicting Qc. The
number of ground truth data NGT¼ 79 was low for the variety of phe-
nomena experimentally observed: specifically, we could clearly observe
a transition from droplets being arranged on two lines [Fig. 5(a)] to
droplets being arranged on a single line [Fig. 5(b)], meaning that the
overall number of dataset available for each scenario was low, thus
causing architecture 2 to return incorrect predictions.

We also compared the machine learning predictions with the
ground truth data and with the scaling in Eq. (1) [Fig. 4(b)]. The pur-
pose of this numerical test was to both assess how well each of the
models had trained along with comparing the data derived with
the scaling previously reported in the literature.12 We observed that
the predicted data followed closely the scaling and the ground truth,
which was also expected considering the fact that the scaling was
found to describe better the ground truth data for the 100lm etched
device. Furthermore, we compared the data of droplet generation fre-
quency obtained by three architecture with the mass balance in Eq. (2)
[Fig. 4(c)], observing a behavior similar to our previous experiments, with
architecture 3 being more accurate than the others, and with architecture
2 performing the worst among the three (R2 < 0 for architecture 2).

We repeated the same investigation for the 190 [Figs. 4(d)–4(f)]
and 275 lm [Figs. 4(g)–4(i)] etched devices. We again observed that
architecture 3 was the best performing architecture. It is important to
re-state here that the deviations observed between the empirical scal-
ing and the machine learning predictions showed the need for a data
driven approach, as the predictions as well varied from the theoretical
scaling while being in close agreement with the ground truth data
[Figs. 4(e) and 4(h)].

In summary, we observed that the predictions for architecture 3
were the most reliable with respect to the experimental ground truth
data. This observation was rooted in the fact that architecture 3
employed the droplet generation frequency as an input parameter,
thus somehow constraining the value of Qd, and leading only to the
prediction of Qc. Architecture 2, based on chained regression, was
found to perform the worst, and this was ascribed to the fact that this
architecture was based on a chained approach with consequently
larger errors. We were not too surprised by the supremacy of the neu-
ral network (architectures 1 and 3): due to the employment of a

number of hidden layers, neural networks are often able to account for
additional parameters that are not explicitly defined. Providing ade-
quate steps are taken to prevent overfitting, the network is typically
expected to perform well.

C. Avoiding overfitting problems: validation of the
machine learning predictions using new experimental
data

One of the key problems with supervised machine learning is
overfitting,47,48 where the experimental noise is computed within the
architecture during the training, thus resulting in predictions that are
only valid for specific experimental conditions and cannot be general-
ized to other systems, or even easily replicated across different labora-
tories because of experimental variability. This problem is particularly
relevant in droplet microfluidics,10 where the resulting droplet size,
shape, and frequency are dependent among a large variety of parame-
ters.7,8 We already took some mitigation steps to address this problem,
especially by choosing commercial devices, which are generally pro-
duced at scale in a highly controlled manner in order to guarantee
homogeneity. However, it is important to see how the machine learn-
ing architectures would respond to experimental variability, in order
to gain confidence that our predictions are not the result of overfitting.
To this aim, we carried out the following new experimental campaign,
carried out on different days from the original ground truth dataset.
Depending on the architecture, we supplied the input parameters and
then derived the values of Qd and Qc required to generate the droplets;
then, we applied the resulting values to our experiments and then
compared the predictions with the actual data [Fig. 6 and Figs. S1 and
S2)], thus simulating the real-life use of our algorithm.

We compared the predictions against the experimental data for
the 190lm etched device (Fig. 6). For each experiment (labeled with
consecutive numbers on the x-axis), we compared the architecture
value (white dashed bars) with the experimental observed value (red
crossed bars), for the droplet length L [Fig. 6(a)], the droplet height H
[Fig. 6(b)], and the droplet frequency f [Fig. 6(c)]. We did not compare
the data with architecture 2, because it was the least performing, as
already described in Sec. III B [Figs. 4(a)–4(c)]. For droplet length and
height, we observed excellent agreement between predictions and
observed data. For the frequency, instead, the minor disagreement
observed for the frequency data was not uncommon in the literature,
as other studies observed a similar trend.34 Furthermore, it is well pos-
sible that not all the droplet sizes and frequency combinations were
possible in our system, as we have constrained the microfluidic device
geometry. It is, however, important to point out that the experimental
parameters of Qd andQc derived via architecture 3 were always return-
ing value of the frequency f on the same order of magnitude compared
to the observed values. We also repeated the same experimental cam-
paign on the 100lm etched device (Fig. S1) and on the 275lm etched
device (Fig. S2) and observed very good agreement. Note that we per-
formed a larger number of experiments with architecture 3 to test the
accuracy of the system in generating droplets having similar sizes but
different generation frequencies.

Taken together, our results show that our training approach for
three architecture does not suffer from overfitting, being the predic-
tions reproducible on experiments performed on different days, thus
accounting for some experimental variability. We also confirmed that

FIG. 5. (a) Droplet formation on two lines in the 100lm etched device. (b) Droplet
formation on a single line in the 100lm etched device. Multimedia available
online.
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architecture 3 is the best performing one for all the etched devices
employed in this work.

D. Proof of concept for algae encapsulation

The formation of droplets in microfluidic devices has widely
been used in the context of encapsulation applications.3,49,50 In this
context, the frequency of droplet formation has become an essential
parameter to know before performing the experiment, so that such fre-
quency could be synchronized to the frequency of equally-spaced
objects approaching the encapsulation area to overcome the Poisson
stochastic encapsulation limit.44,46,51,52 The droplet size, instead, is a
crucial parameters for microfluidic applications related to encapsula-
tion and co-encapsulation of cells53 together with other cells or func-
tionalized particles.54 As a proof of concept featuring the
encapsulation of biological objects, we here employed architecture 3 to
predict the droplet size and frequency in the 100 lm etched device

with the aim of encapsulating the Tetraselmis suecica algae (Fig. 7).
We performed encapsulation experiments using both PBS [Fig. 7(a)]
and Algae Media [Fig. 7(b)] as dispersed phase. The encapsulation of
algae has been employed before to demonstrate intra-droplet growth,35

as well as to elucidate inter-kingdom interactions in confined environ-
ments.55 In our experiments, we clearly observed successful in-flow
encapsulation at the flow-focusing microfluidic junction [Figs. 7(a)
and 7(b)]. Notably, we compared architecture 3 values (the input
parameters from which we obtained the values of Qc and Qd) and the
ones observed in the experiments [Figs. 7(c)–7(e)]. For both PBS and
Media, we observed good agreement on droplet sizes between the
observed parameters and the input parameters in architecture 3. Most
notably, we observed only a minor deviation when using the Algae
media instead of PBS as the dispersed phase, despite the different value
of interfacial tension measured for the two fluid combinations, in
agreement with the literature.56 Such observation can be justified in
light of the weak dependency of the droplet length L with the Capillary

FIG. 6. Comparison between the speci-
fied values (dashed bars) and the experi-
mental values (crossed bars) for droplet
length L (a), droplet height H (b), and fre-
quency f (c) for architectures 1–3, for the
device with etching depth of 190l. The
x-axis numbers refer to different experi-
ments carried out on different days to test
accuracy of the model against experimen-
tal variability.
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number Ca, as observed from the ground truth data [Fig. 3(b)], with
L / Ca�0:35. For the frequency, while the observed value fell within a
reasonable order of magnitude of the given values, there were more
significant discrepancies, in line with similar type of deviations previ-
ously observed in the literature.34 In other words, our results are
expected to be usable also for other type of dispersed aqueous
Newtonian phases which not depart significantly from the PBS, for
instance with similar viscosity and interfacial tension values. We col-
lected downstream the droplets with the encapsulated algae [Figs. 7(f)
and 7(g)] and observed that the droplets retained their size and shape
for both PBS and algae media.

The take-home point from this section was the fact that we could
use architecture 3 for the purpose of algae encapsulation, even when
the dispersed phase presented some different properties compared to
the training fluid (PBS).

E. Droplet microfluidic app to predict experimental
parameters

We developed an application based on architecture 3 using the
Rust Programing Language (Fig. 8). The user can either use our build

in model or insert their own trained model by activating the toggle on
the top left of the panel: this is useful if the liquid combination departs
significantly from the one employed in this work, especially in terms
of viscosity and interfacial tension. On the top right, instead, the user
is invited to define which etching depth the channel has, with choices
among 100, 190, and 275 lm (which are the devices employed in this
work). The users then insert the input data, namely, the droplet length
L, the droplet height H, and the droplet generation frequency f. After
inserting the input parameters, the app will return the predictions for
the volumetric flow rate values of PBS (Qd) and FluoSurf (Qc).
According to the results presented earlier in this manuscript, we expect
the app to provide relatively accurate values even if the fluid combina-
tion is different from the one employed here, as long as the interfacial
tensions between the two liquids is close to the 3mN � m (measured
here), and the viscosity values for the two phases are close to the ones
reported in our work.

IV. CONCLUSIONS

In this work, we employed ML to predict the experimental
parameters required for droplet generation in commercialized micro-
fluidic devices using phosphate buffer saline (PBS) and fluorinated oil

FIG. 7. Experimental snapshots for algae encapsulation in droplets made of phosphate buffer saline PBS (a), and algae media (b). Comparison between the specified values
(dashed bars) and the experimental values (crossed bars) for droplet length L (c), droplet height H (d), and frequency f (e) using architecture 3, in both PBS and algae media.
Experimental snapshots of algae encapsulated in droplets collected using a Sedgewick rafter counting chamber, for both PBS (f) and Media (g). Scale bars are 100 lm.
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as dispersed and continuous liquid phases, respectively. We showed
that the experimental dataset derived in the three microfluidic flow-
focusing devices was robust enough to be employable as ground truth
for the training of the machine learning algorithms. We were justified
in employing a machine learning algorithm over a standard fitting
procedure, as we could not clearly identify a mastercurve describing all
our experimental results, with the data following the scaling only qual-
itatively. We observed that the predictions for architecture 3 were the
most reliable with respect to the experimental ground truth data. This
observation was rooted in the fact that architecture 3 employed droplet
generation frequency as an input parameter, thus somehow constrain-
ing the value of Qd, and leading only to the prediction of Qc.
Architecture 2 based on chained regression was found to perform the
worst, and this was ascribed to the limited number of data available
for the training. We performed a further experimental campaign dem-
onstrate the validity of the predictions made by architecture 3 on dif-
ferent days, where experimental variation is a potential issue. We also
demonstrated the use of architecture 3 predictions in the context of
Algae encapsulation. Finally, we introduced an app where the users
could select the device type, the droplet size, and generation rate to
derive the predicted values of the liquid flow rates required.

We expect our results to be useful to the wider microfluidic
community, being droplet microfluidic employed across a variety of
different fields.1–3 Future directions should include study of non-
Newtonian droplet formation,12,57,58 which has currently gained fur-
ther attention in the context of controlled encapsulation.44,46 Our
results could also be employed to help tackling the problem of stochas-
tic encapsulation, which prevent wide-spread adoption of such tech-
nologies within the medical setting.

SUPPLEMENTARY MATERIAL

See the supplementary material for Fig. S1 (predictions and
experiments in the 100lm channel) and Fig. S2 (predictions and
experiments in the 275lm channel).
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